skip to main content


Search for: All records

Creators/Authors contains: "Greene, Abigail S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability to sustain attention differs across people and changes within a single person over time. Although recent work has demonstrated that patterns of functional brain connectivity predict individual differences in sustained attention, whether these same patterns capture fluctuations in attention within individuals remains unclear. Here, across five independent studies, we demonstrate that the sustained attention connectome-based predictive model (CPM), a validated model of sustained attention function, generalizes to predict attentional state from data collected across minutes, days, weeks, and months. Furthermore, the sustained attention CPM is sensitive to within-subject state changes induced by propofol as well as sevoflurane, such that individuals show functional connectivity signatures of stronger attentional states when awake than when under deep sedation and light anesthesia. Together, these results demonstrate that fluctuations in attentional state reflect variability in the same functional connectivity patterns that predict individual differences in sustained attention.

     
    more » « less
  2. Abstract

    The endocannabinoid system is an important regulator of emotional responses such as fear, and a number of studies have implicated endocannabinoid signaling in anxiety. The fatty acid amide hydrolase (FAAH) C385A polymorphism, which is associated with enhanced endocannabinoid signaling in the brain, has been identified across species as a potential protective factor from anxiety. In particular, adults with the variant FAAH 385A allele have greater fronto‐amygdala connectivity and lower anxiety symptoms. Whether broader network‐level differences in connectivity exist, and when during development this neural phenotype emerges, remains unknown and represents an important next step in understanding how the FAAH C385A polymorphism impacts neurodevelopment and risk for anxiety disorders. Here, we leveraged data from 3,109 participants in the nationwide Adolescent Brain Cognitive Development Study℠ (10.04 ± 0.62 years old; 44.23% female, 55.77% male) and a cross‐validated, data‐driven approach to examine associations between genetic variation and large‐scale resting‐state brain networks. Our findings revealed a distributed brain network, comprising functional connections that were both significantly greater (95% CI forpvalues = [<0.001, <0.001]) and lesser (95% CI forpvalues = [0.006, <0.001]) in A‐allele carriers relative to non‐carriers. Furthermore, there was a significant interaction between genotype and the summarized connectivity of functional connections that were greater in A‐allele carriers, such that non‐carriers with connectivity more similar to A‐allele carriers (i.e., greater connectivity) had lower anxiety symptoms (β = −0.041,p = 0.030). These findings provide novel evidence of network‐level changes in neural connectivity associated with genetic variation in endocannabinoid signaling and suggest that genotype‐associated neural differences may emerge at a younger age than genotype‐associated differences in anxiety.

     
    more » « less
  3. Abstract Introduction

    Working memory is a critical cognitive ability that affects our daily functioning and relates to many cognitive processes and clinical conditions. Episodic memory is vital because it enables individuals to form and maintain their self‐identities. Our study analyzes the extent to which whole‐brain functional connectivity observed during completion of anN‐back memory task, a common measure of working memory, can predict both working memory and episodic memory.

    Methods

    We used connectome‐based predictive models (CPMs) to predict 502 Human Connectome Project (HCP) participants' in‐scanner 2‐back memory test scores and out‐of‐scanner working memory test (List Sorting) and episodic memory test (Picture Sequence and Penn Word) scores based on functional magnetic resonance imaging (fMRI) data collected both during rest andN‐back task performance. We also analyzed the functional brain connections that contributed to prediction for each of these models.

    Results

    Functional connectivity observed duringN‐back task performance predicted out‐of‐scanner List Sorting scores and to a lesser extent out‐of‐scanner Picture Sequence scores, but did not predict out‐of‐scanner Penn Word scores. Additionally, the functional connections predicting 2‐back scores overlapped to a greater degree with those predicting List Sorting scores than with those predicting Picture Sequence or Penn Word scores. Functional connections with the insula, including connections between insular and parietal regions, predicted scores across the 2‐back, List Sorting, and Picture Sequence tasks.

    Conclusions

    Our findings validate functional connectivity observed during theN‐back task as a measure of working memory, which generalizes to predict episodic memory to a lesser extent. By building on our understanding of the predictive power ofN‐back task functional connectivity, this work enhances our knowledge of relationships between working memory and episodic memory.

     
    more » « less